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by 
Harris Rabinovich 

Goddard Sfince Flight Centev 

SUMMARY 

The solutions to the Schrodinger equation for the diatomic 
molecule (HeH)++ in the Born-Oppenheimer approximation have 
been expanded in a series of partial waves and radial equations 
have been derived. These radial equations have been solved nu- 
merically for the first three orders  of approximation and the 
energy eigenvalues and wavefunctions have been obtained for 
seven different 1 states a t  various values of the internuclear sep- 
aration. The numerical wavefunctions have been used to calculate 
dipole transition integrals and dipole moments. 
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PARTIAL WAVE CALCULATION 
OF THE DIATOMIC 
MOLECULE (HeH)++ 

by 
H a r r i s  Rabinovich 

Goddard Space Flight Center 

INTRODUCTION 

This paper contains an approximate calculation of the eigenvalues, eigenfunctions, and dipole 
transition integrals of the diatomic molecule (HeH)' + in the Born-Oppenheimer approximation. 
The method involves expanding the molecular wavefunctions in a ser ies  of partial waves about the 
charge center of the molecule. Although this approach is capable of yielding extremely precise 
results, this study w a s  carried out with the intention of investigating how rapidly various orders  
of the approximation converge to the exact results and to what extent these approximate results 
display the qualitative features of the physics. This particular calculation is interesting because 
although previous calculations exist they a r e  all restricted to (H,)+ which is homonuclear, whereas 
(HeH)" is, of course, heteronuclear (References 1, 2, and 3). In addition, a number of new results 
a r e  presented. These include the approximate eigenvalues of two E-states, the dipole moments for 
these states and others, and a large number of dipole transition integrals. 

THEORY 

The partial wave theory is a particular form of single center expansion. In this case the 
charge center is chosen as the origin and the wave function is expanded about this point. The 
motivation for this choice of origin is simply the fact that the forces a r e  strictly Coulombic and 
the charge center is the point on the z-axis (taken as the internuclear axis) which has the greatest 
dynamical symmetry with respect to the potential. For example, when the electron is far from the 
nuclei, the nuclei behave like a single particle of charge + 3  located at the charge center. 

If A and B denote the helium and hydrogen nuclei, respectively, then in the Born-Oppenheimer 
approximation the Hamiltonian can be written as 
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(Here, and throughout this paper, lengths a r e  in Bohr radii  (0 .529i )  and energies in rydbergs 
(13.605 ev)) .  Having defined the origin and the z - a x i s ,  the next step is to expand the cosine law 
form of the electronic potentials in a series of Legendre polynomials about the charge center. 
This yields 

4 
H = -v2 - 2 vj Pj (cos8) + - 1 

RAB 
j = O  

where 

Except where specifically noted all the energy eigenvalues given include the internuclear potential. 

The partial wave theory (Reference 1) starts with the expansion of the wave function in an in- 
finite se r ies  of partial waves. For a given magnetic state, M ,  such an expansion is 

If we insert  Equation 6 into the Schrodinger equation and integrate over the angular variables, the 
result is an infinite set of coupled second-order differential equations: 

Cj:: is simply an integral of the product of three spherical harmonics: 

2 



Up to this point the solutions a r e  exact. The approximation consists of replacing the infinite 
se r ies  of partial waves with a finite number of partial waves. Convergence of successive orders  
of the approximation is insured by the presence of the centrifugal barr ier ,  -&(& + l ) / r* ,  which de- 
presses  the magnitude of higher angular momentum te rms  in the region of the interaction (Refer- 
ence 1). It can easily be shown that the variational determination of the @& ( r ) ’ ~  is equivalent to 
solving the se t  of equations 

This is t rue for any order  of the approximation. As a result the integral, 

will be a minimum for the ground state and an extremum for any excited state.  Since the eigen- 
functions of a particular order a r e  the eigenfunctions of a Hermitian operator they a r e  orthogonal 
as long as the eigenvalues a r e  nondegenerate. The wave function for the p th  order approximation 
contains p + 1 t e rms  and yields a se t  of p + 1 coupled differential equations for each of the three 
regions of configuration space. The zeroth-order approximation corresponds to approximating the 
two separate Coulomb potentials by a truncated Coulomb potential of charge + 3  located at the charge 
center. This approximation is pictured in Figure 1. 

Several important properties of the approximate calculation can be deduced by examining the 
radial equations. For simplicity we will discuss the first order approximation. The first order 
wavefunction for Z states is 

From Equation 9 we get a pair  of coupled 
differential equations for each of the three 
regions of configuration space. In the united 
atom limit, R,, - 0 ,  the situation is described by 
the pair of equations which are valid for 
r > 2/3 R,, . At the limit, this pair of equations 
reduces to radial par ts  of the Schrodinger equa- 
tion for the 8 = 0 and 4 = l s ta tes  of the doubly 
ionized lithium atom. Hence the first-order 
approximation excludes all solutions which do 
not correspond to either s or p states  in the 

2/3 
I r 
I 

Figure 1-Exact Coulomb potential and the zeroth-order 
approximation for R,, = 1 .  
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united-atom limit. Therefore, a molecular d -state, united-atom designation, will be excluded in 
first-order, and in order  to calculate it a second-order calculation is necessary. Infinite separa- 
tion of the nuclei produces a situation in which the equations valid for r < 1/3 RAB are significant. 
In this limit the equations reduce to the radial portion of the Schrodinger equation for the free  elec- 
tron with either zero or unit angular momentum. At this point any calculation which uses  a finite 
approximation yields incorrect results since the actual situation corresponds to either an alpha 
particle and a hydrogen atom or  a singly ionized helium atom and a proton. 

The differential equations which were derived in the previous paragraphs have been solved nu- 
merically. The method is an iterative procedure which involves integrating outward from the 
origin, while simultaneously integrating inward from some suitably chosen large value of the radius. 
At some intermediate value of the radius the solutions and their  derivatives are matched. This 
technique was designed by L. Fox and is described in the appendix of a paper by Cohen and Coulson 
(Reference 2) and in a separate art icle by Fox (Reference 4). The calculations were performed on 
the IBM 7094 computer at the Theoretical Division of the Goddard Space Flight Center. 

RESULTS 

Calculations have been performed for  s ix  Z states of the molecule. In the united-atom designa- 
tion they a r e  the lso, 2po , 2sa , 31x7, 3do and 3 s o  states.  In the separated atom designation these 
same states correspond to the q i s ) H e + ,  a ( l s )H ,  a(2s, 2pZ)He+, o ( 2 s ,  2p,)H, o ( 2 ~ ,  2p,)He+, and 
o (3s ,  3pZ , 3dz) He+ states  respectively. Table 1 contains the complete results of the eigenvalue 
calculations. Results for those E states which have been calculated exactly a r e  included (Refer- 
ence 5). Figure 2 is a graph of the potential energy of the ground state as a function of R,, . The 
minima which appear in the potential energy curve in this case are spurious. Since the approxima- 
tion reduces to a free-electron Hamiltonian for  infinite separation, as described previously, any 
state which has a negative potential energy will  show a minimum in its potential energy curve (Ref- 
erence 1). The convergence of succeeding orders  of the approximation is quite apparent. Figures 
3 and 4 are graphs of the electron energy of the first five excited sigma states.  The nuclear re -  
pulsion has been removed in order to show certain features. Notice that all states converge to 
their proper united-atom limits. 

On the surface we might be tempted to tes t  the results of these eigenvalue calculations with 
the provisions of the Hylleraas- Undheim theorem (Reference 6). This theorem establishes certain 
inequalities between the eigenvalues of successive orders  of approximation of a variational calcu- 
lation which is very similar to this one. In the Hylleraas-Undheim calculation the wave function is 
expanded in a complete set  of functions with undetermined coefficients. The approximation con- 
sists of using a finite number of these functions and performing the variation on their coefficients. 
Hylleraas and Undheim show that i f  the eigenvalues of any order h are numbered calling the ground 
state E,, the first excited state E, ,  and the res t  accordingly, then, E L h )  ? E L h t 1 )  ,E,,(-:). The second 
order 3po and 3& eigenvalues violate the theorem between R,, = 1.5 and R,, = 3. However, this 
calculation satisfies conditions which are only similar and not identical to those of the Hylleraas- 
Undheim theorem. The difference is that in order to  prove the inequalities between the eigenfunctions, 
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Table 1 

Energy Eigenvalues. 

State 

l s u  
2PU 
2 s u  
3PU 
3d u 
3s u 

1s 5 

2PU 
2s  5 

3PU 
3d u 
3 s u  

l su  
2PU 
2su  
3PU 
3d- 
3su 

l s u  
2PU 
2su  
3PU 
3d5 
3su 

l su  
2PU 
2su  
3PU 
3do 
3SU 

l s u  
2PU 
2su  
3PU 
3du 
3 s u  

1.90 

2PO 
2su  
3PU 
3d 0 

3su 

Zeroth Order  

7.7871 

13.8513 

15.0303 

0.8488 

5.9970 

7.0750 

-0.9424 

3.4598 

4.4492 

-1.5831 

2.2359 

3.1512 

-1.8895 

0.5385 

1.2533 

-1.6717 

0.0612 

0.6551 

-1.4584 

-0.1358 

0.3741 

First Order  

7.7692 
13.7129 
13.849 1 
14.9892 

15.0297 

0.7815 
5.6121 
5.9899 
6.9617 

7.0730 

-1.0772 
2.8250 
3.4463 
4.2673 

4.4453 

-1.7895 
1.4065 
2.2157 
2.9202 

3.1456 

-2.3257 
-0.4486 

0.4971 
0.9737 

1.2423 

-2.2044 
-0.7463 

0.0068 
0.3924 

0.6403 

-2.0094 
-0.7701 
-0.1987 

0.1286 

0.3559 

Second Order  
~ 

7.7365 
13.7128 
13.8451 
14.9891 
14.9984 
15.0285 

0.6868 
5.6109 
5.9784 
6.9612 
6.9935 
7.0695 

-1.2300 
2.8187 
3.4283 
4.2652 
4.3184 
4.4400 

-1.9952 
1.3915 
2.1924 
2.9156 
2.9728 
3.1386 

-2.6955 
-0.4876 

0.4551 
0.9654 
0.8911 
1.2309 

-2.6586 
-0.7849 
-0.0634 

0.3924 
0.1625 
0.6223 

-2.4931 
-0.8028 
-0.3152 

0.1428 
-0.1463 

0.3262 

Exact 

7.7327 
13.7125 
13.8446 

14.9984 

0.6689 
5.6045 
5.9761 

6.9935 

-1.2694 
2.7870 
3.4232 

4.3181 

-2.0667 
1.3233 
2.1838 

2.9716 

-3.0244 
-0.6903 

0.4258 

0.8575 

-3.3376 
-1.0243 
-0.1101 

0.0176 

-3.5012 
-1.0622 
-0.3620 

-0.4137 
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.... . . .. ... 

the Hylleraas-Undheim theorem is restricted to a fixed set of basis functions, whereas in this cal- 
culation the basis functions, the @A ( r ) ' s  , change in each order of approximation. 
modified form of the Hylleraas-Undheim theorem appears to hold; namely, that E:~) 2 E,(~+I), pro- 
vided one interprets the n ' s  correctly. Since the approximate energy curves in the same order 

Empirically, a 

-3.00 

-4.00 I 1 ~. I I 

- 

0.00 1.00 2.00 3.00 4.00 
R A B  (Bohr radii) 

Figure 2 - l so  electron energies versus RAW E(2)  i s  the 
energy for the second-order approximation, etc. 

1 
0 1.00 2 .oo 3 .OO 4.00 

-3.00' I 

RAB (Bohr radii) 

Figure 3-2pu and 2 s u  electronic energies versus R B .  
E(2) i s  the energy for the second-order approximation, 
etc. 

approximation may cross  each other, the n th  

eigenvalue may re fer  to different spectral t e rms  
for different values of R,,. 
R,, = 1 in the second order approximation the 
3 p  state lies lower than the 3d5 state and cor- 
responds to E,, the third excited state, while the 
3d5 state corresponds to E,, the fourth excited 

state. At R,, = 4, the 3dc state l ies below the 
3 p  state and corresponds to E, while the 3 p  

state corresponds to E,.  This results from the 
fact that the second order 3p5 and 3dc states  
c ross  each other at R,, slightly less  than 2. By 
interpreting the n ' s  in this manner the condition 
that E,(h))E,(h+l) is fulfilled for all calculated 
results. 

For instance at 

Dipole transition integrals were calculated 
using both the dipole length, Equation 12, and 

-0.60 - 

-0.70 - 

-0.80- 

..-. "7 1 -0.90 - 
-0 

6 -1.00- 

t 

> 
-1.10- 

-1.20 - 

E(3d) E X A C T  

-1.40 -1.30! I I \, 
1.00 2.00 3.00 4.00 

-1.500 

R A B  (Bohr radii) 

Figure 4-3po, 3dc, and 355 electronic energies versus 
RAB: E(2) i s  the energy for the second-order approxi- 
mation, etc. 
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the dipole velocity, Equation 13, formulations: 

Q = {$I d7 

and 

Table 2 includes both the approximate and exact (References 7 and 8) values of the dipole integrals. 
The dipole velocities were calculated using both forms of Equation 13 and all values agree within 
0.5%. Figures 5, 6, and 7 depict the 2 p o - 2 ~ 0 ,  2po-3du, and the lsc-3du transitions. If 3, = $b in 
Equation 12 then the zth component of this integral is the dipole moment. Table 3 contains a list 
of the approximate and exact dipole moment calculations (References 9 and 10). The dipole mo- 
ment of the 2po and 3pu states is measured with respect to the proton and the dipole moment of the 
remaining states is measured with respect to the alpha particle. The signs in Table 3 refer to the 
vector direction of the dipole moment and a r e  to be interpreted in the normal sense. Figures 8 
and 9 a r e  graphs of the dipole moment for the lsc and 2pc states. 

We shall discuss all the calculations simultaneously so as to unify the discussion. This is 
particularly easy since the discrepancy between the exact and approximate results is due to a 
single cause, namely, the attempt to use a finite number of te rms  of the potential expansion about 
the charge center in place of the exact electronic potentials. For small  internuclear separations, 
the electronic Coulomb potential wells coalesce and they can be approximated easily. Even the 
zeroth-order calculations a r e  good, although in  zeroth order the potential approximation is only a 
truncated Coulomb potential. A s  the internuclear separation increases the Coulomb potential wells 
separate and we a r e  faced with trying to approximate the singularities of the two separate wells. 
In the higher order approximations the approximate potential possesses kinks which represent the 
singularities. However as R,, increases, the magnitudes of the kinks decrease and they become 
poorer approximations to the singularities. Finally, as we stated previously, our approximate 
equgations describe a free electron, whereas we really have an  alpha particle and a hydrogen atom, 
or a singly ionized helium atom and a proton. This situation can be improved by using a greater 
number of te rms  to approximate the potential. The real  question is, to what extent do the approx- 
imate results correspond to the exact results. The energy eigenvalues a r e  within 6% of the exact 
values up to RAB = 1 in the second-order approximation. This 6% discrepancy is for the ground 
state and represents the largest  e r r o r  at this point. The energy eigenvalues of the excited states 
a r e  more accurate because these states have their maximum probability density in regions where 
the potentials a r e  small  and well represented. A s  a result the integral of the potential energy and 
its concomitant e r r o r  a r e  both reduced in magnitude. 

In general one expects that increasing the order of approximation leads to a better represen- 
tation of the potential and would extend the range of R,, which produced valid results.  This is 
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Table 2 

Dipole Transition Integrals. 

2nd Order  
Dipole 

Velocity 
R A B  

1st Order  
Dipole 
Length 

1s t  Order  
Dipole 

Velocity 

2nd Order  
Dipole 
Length 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.290 
0.356 
0.412 
0.450 
0.443 
0.355 
0.280 

0.293 
0.376 
0.463 
0.539 
0.681 
0.690 
0.685 

0.289 
0.360 
0.427 
0.474 
0.488 
0.425 
0.386 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.017 
0.036 
0.058 
0.080 
0.163 
0.224 
0.295 

0.017 
0.037 
0.061 
0.087 
0.176 
0.228 
0.258 

0.017 
0.038 
0.063 
0.089 
0.192 
0.293 
0.378 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.108 
0.110 
0.099 
0.082 
0.051 
0.057 
0.072 

0.109 
0.119 
0.118 
0.110 
0.104 
0.135 
0.175 

0.108 
0.114 
0.106 
0.091 
0.051 
0.044 
0.050 

0.003 
0.009 
0.020 
0.036 
0.125 
0.146 
0.048 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.007 
0.016 
0.025 
0.034 
0.070 
0.097 
0.119 

0.007 
0.016 
0.027 
0.038 
0.076 
0.099 
0.111 

0.007 
0.016 
0.027 
0.038 
0.079 
0.111 
0.131 

0.289 
0.359 
0.423 
0.464 
0.441 
0.350 
0.294 

0.017 
0.038 
0.062 
0.088 
0.187 
0.301 
0.432 

0.108 
0.113 
0.105 
0.088 
0.039 
0.021 
0.013 

0.003 
0.009 
0.019 
0.035 
0.143 
0.211 
0.157 

0.007 
0.016 
0.027 
0.037 
0.076 
0.111 
0.144 

Exact 
Value 

~~ 

0.248 
0.289 
0.360 

0.474 
0.417 
0.263 
0.168 

0.000 
0.017 
0.038 
0.063 
0.092 
0.181 
0.217 
0.231 

.050 

0.000 
0.003 
0.009 
0.019 
0.035 
0.157 
0.258 
0.282 

0.000 
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Table 2 (continued) 

Dipole Transition Integrals. 

Transition 

2pu-2su 

2pu-3pu 

2pu-3d~  

2 p c - 3 ~ ~  

2 s u - 3 ~ ~  

RAB 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

1st Order  
Dipole 
Length 

0.977 
0.895 
0.785 
0.688 
0.543 
0.597 
0.745 

0.047 
0.087 
0.118 
0.142 
0.215 
0.285 
0.353 

0.113 
0.010 

-0.063 
-0.100 
-0.128 
-0.134 
-0.132 

0.707 
0.907 
1.081 
1.192 
1.276 
1.248 
1.245 

1st Order  
Dipole 

Velocity 

0.972 
0.899 
0.789 
0.685 
0.469 
0.391 
0.362 

0.047 
0.088 
0.119 
0.144 
0.220 
0.284 
0.333 

0.113 
0.009 

-0.065 
-0.100 
-0.104 
-0.074 
-0.038 

0.709 
0.919 
1.112 
1.249 
1.464 
1.605 
1.806 

~ 

2nd Ordei 
Dipole 
Length 

0.977 
0.895 
0.781 
0.677 
0.506 
0.604 
0.863 

0.030 
0.056 
0.076 
0.091 
0.174 
0..236 
0.305 

0.793 
0.732 
0.670 
0.632 
0.670 
0.713 
0.626 

0.115 
0.017 

-0.054 
-0.088 
-0.096 
-0.074 
-0.039 

0.705 
0.905 
1.087 
1.209 
1.328 
1.369 
1.385 

2nd Order  
Dipole 

Velocity 

0.972 
0.889 
0.774 
0.668 
0.519 
0.781 
1.441 

0.030 
0.055 
0.074 
0.086 
0.147 
0.157 
0.150 

0.796 
0.743 
0.694 
0.676 
0.866 
1.118 
1.140 

0.116 
0.017 

-0.052 
-0.085 
-0.093 
-0.089 
-0.075 

0.704 
0.904 
1.084 
1.204 
1.320 
1.370 
1.361 

Exact 
Value 

1.000 
0.977 
0.891 

0.641 
0.341 
0.209 
0.135 

0.000 

0.817 
0.794 
0.736 

0.630 
0.731 
0.948 
1.141 

0.181 

0.590 
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Table 2 (continued) 

Dipole Transition Integrals. 

Transition 

2 S D - ~ ~ U  

2 su-3so 

3pu-3dc 

3p 0: 3 so 

3dU-3su 

~ 

RA, 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

0.00 
0.25 
0.50 
0.75 
1.00 
2.00 
3.00 
4.00 

1st Order  
Dipole 
Length 

0.052 
0.106 
0.159 
0.208 
0.352 
0.431 
0.483 

2.399 
2.221 
1.978 
1.761 
1.395 
1.412 
1.559 

1st Order  
Dipole 

Velocity 

0.052 
0.107 
0.161 
0.212 
0.363 
0.451 
0.502 

2.387 
2.224 
1.988 
1.771 
1.362 
1.306 
1.358 

2nd Order  
Dipole 
Length 

0.040 
0.086 
0.132 
0.172 
0.222 

-0.299 
-1.164 

0.054 
0.112 
0.172 
0.231 
0.436 
0.564 
0.503 

1.732 
1.726 
1.705 
1.667 
1.314 
0.821 
0.347 

2.403 
2.235 
2.001 
1.789 
1.450 
1.649 
2.116 

0.058 
0.106 
0.134 
0.137 
0.019 

-0.350 
-0.796 

2nd Order  
Dipole 

Velocity 

0.040 
0.087 
0.136 
0.182 
0.306 
0.017 

-0.525 

0.054 
0.112 
0.172 
0.231 
0.438 
0.572 
0.503 

1.734 
1.730 
1.710 
1.671 
1.357 
0.786 
0.217 

2.394 
2.229 
1.994 
1.780 
1.462 
1.771 
2.49 1 

0.059 
0.107 
0.136 
0.141 
0.033 

-0.347 
-0.843 

Exact 
Value 

0.000 
0.040 
0.085 
0.137 
0.199 
0.343 
0.322 
0.026 
- 

0.000 

1.732 

2.452 

0.000 
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Figure 5-2pu-2w dipole transition integral versus RAB. 
Q i s  exact result, Qi2) i s  second-order dipole length, 
and QJ’) i s  first-order dipole velocity. 

Figure 6-2pu-3du dipole transition integral versus RAB. 
Q i s  exact result, QL(2) i s  second-order dipole length, 
and Qd2) i s  second-order dipole velocity. 

0 

borne out by the calculations of the energy 
eigenvalues, the dipole moments, and some of 
the transition integrals. For the remaining 
transition integrals the situation is not clear- 
cut. Checking the 2pu-2s.u transition atR, ,  = 3 
and 4 in Figure 5, we find that the first-order 
results a r e  superior to the second-order re- 
sults. For smaller values of R,, the situation 
reverses.  Unfortunately, energy minimization 
is not sufficient to produce good wave functions 
at this level of approximation in this region. It 
is therefore necessary to calculate at a higher 
order of approximation where the potential 

0.30 I 

R A B  (Bohrradii) 

Figure 7-1w-3cb dipole transition integral versus R,, . 
Q i s  exact result, QL2) i s  second-order dipole length, 
and Q,’2’ i s  second order dipole velocity. 

representation will be improved. Energy minimization, the solution of the se t  of coupled differen- 
tial equations, wil l  include coupling f rom the newly added higher order te rms  back to  the previously 
included te rms  and better wave functions will result. Hence a certain amount of caution must be 
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Table 3 

Dipole Moments. 

STATE 

lsa 

2PO 

2 s a  

3P * 

3da 

3su 

First Order 

Second Order 

Exact 

F i r s t  Order  

Second Order  

Exact 

F i r s t  Order 

Second Order 
- 

F i r s t  Order 

Second Order 

Second Order 
- 

F i r s t  Order 

Second Order 
- 

L_- .. - 

0.25 

0.078 

0.078 

. .. 

-0.046 

-0.041 

-0.050 

-0.051 

0.155 

0.084 

0.166 

-0.254 

-0.265 

0.50 

0.138 

0.137 

0.137 
. .  

-0.110 

-0.089 

-0.092 

-0,110 

-0.124 

0.267 

0.145 

0.331 

-0.513 

-0.548 

0.75 

0.179 

0.172 

-0.188 

-0.144 

-0.180 

-0.211 

0.330 

0.172 

0.495 
... . 

-0.757 

-0.832 

.- . 

RAB 

1.00 

0.202 

0.186 

0.180 

-0.269 

-0.198 

-0.191 
_ _  

-0.248 

-0.304 
. -  

0.361 

0.169 
- 

0.658 
. ~- 

-0.971 

-1.102 

2.00 

0.242 

0.157 

0.088 
- 

-0.577 

-0.400 

-0.325 
~ 

-0.422 

-0.652 
-- __ 

0.288 

0.124 

1.147 

-1.466 

-1.956 

~ .- 

3.00 
- 

0.328 

0.162 

0.035 
.. 

-0.953 

-0.672 

-0.509 
_ _ _  

-0.429 

-0.801 
__ ~~ 

-0.034 

-0.262 
. 

1.545 

-1.543 

-2.353 

4.00 
- .. 

0.461 

0.214 

0.018 
~ -___ 

-1.407 

-1.009 

-0.657 

-0.326 

-0.336 
_ _ ~ -  

-0.528 

-0.772 
- ~- 

1.446 
_ .~  ~~ 

-1.443 

-1.803 

_ -  

used before using values of the dipole transition integral calculated at values of R A B  greater 
than unity. 

CONCLUSION 

By expanding the wave function in a ser ies  of partial waves and expanding the electronic po- 
tentials in a ser ies  of Legendre polynomials, we have derived a se t  of coupled differential equations 
which describe the radial functions which a r e  the coefficients of the partial waves in the expansion. 
These equations have been solved numerically using a high-speed computer. For the second-order 
approximation the results a r e  accurate up to R,, = 1. In addition the dipole moments and dipole 
transition integrals a r e  also accurate up to this point. The strengths of this method a r e  that at 
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Figure 8-lsadipole moment versus R A B .  Q i s  the exact 
result, and (22') i s  the first order dipole moment. 

R A B  (Bohrrodii) 

Figure 9-2po dipole moment versus RAB. Q i s  the exact 
result, and (22') i s  the first order dipole moment. 

every order of approximation the eigenvalues are extrema and the eigenfunctions are orthogonal. 
Also it is possible to calculate all the eigenvalues and eigenfunctions of a given order and symmetry 
from the same computer program (Reference 1). The weaknesses of the method a r e  that approxi- 
mation becomes poorer as R,, is increased, and in order to improve the accuracy it is necessary 
to calculate higher orders  of the approximation. 
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